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Electronic communications, as well as other categories of interactions within social net-

works, exhibit bursts of activity localised in time. We adopt a self-exciting Hawkes process

model for this behaviour. First we investigate parameter estimation of such processes and

find that the choice of triggering function is not as important as getting the correct param-

eters once a choice is made. Then we present a relaxed maximum likelihood method for

filling in missing data in records of communications in social networks. Finally we demon-

strate the method using a data set composed of email records from a social network based

at the United States Military Academy. The method performs differently on this data and

data from simulations, but the performance degrades only slightly as more information is

removed. The ability to fill in large blocks of missing social network data has implications

for security, surveillance, and privacy.

1 Introduction

1.1 Burstiness and Hawkes processes

The ways humans interact has long been a subject of interest. The rise of electronic

communication, and particularly social media, has made large data sets of human in-

teractions available. Growing interest in privacy and cybercommunications has led to

questions about what can be learned from this data and how it is used.

A natural first question is how to model patterns of social interactions. A point process

seems a natural choice, but the simplest point process, the Poisson process, is ill suited

to modeling several classes of human activity, including communication. The problem,

broadly speaking, is that human activity patterns tend to be “bursty”, that is, more

tightly clustered in time than a Poisson process. See, for example, Figure 1. Two time

series are plotted. Figure 1(a) is taken from the IkeNet data set, which will be discussed

in detail later. It shows the times that two particular users sent each other emails. Figure

1(b) is a realisation of a Poisson process. The two time series have the same number of
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Figure 1. Two time series. The axis is time, and circles indicate events. Each time series has
68 events. (a) Timestamps of emails sent between IkeNet user 6 and IkeNet user 15. (b) A
simulated Poisson process.

events, but the IkeNet time series is more strongly clustered. This suggests a Poisson

process is a suboptimal choice for modelling human interactions. Bursty dynamics have

been observed in Web browsing [34], emails [1], communications within electronic social

networking systems [32], mobile phone calls [23], FTP requests [29], and even face-to-face

interactions [16].

In 1971 Hawkes [13, 14] introduced a class of self-exciting point processes that have

come to bear his name. A Hawkes process is a nonhomogeneous Poisson process n(t)

whose intensity is governed by

λ(t) = µ+
∑

ti<t

g(t− ti; θ). (1.1)

Each ti is an event time, µ is a deterministic background intensity, and g is a triggering

function specifying how much a recent event increases the intensity, hence the notion of

the Hawkes process as self-exciting. Here we note explicitly the dependence of g on a

vector θ of parameters because we will estimate these parameters statistically, but we

may omit it later for notational convenience. (Nonparametric approaches to estimating

g have also been developed [18, 21].) Likewise we may write λ(t|{ti}
n(t)
i=1 ) when we want

to emphasise the dependence of λ on the history. The background intensity µ can be

time-dependent, but we take it as a constant for simplicity. This choice has precedent in

seismology [21].

Figure 2 shows Hawkes process realisations with µ = 0.15 and g(t) = 0.5e−0.6t. The

intensity and event times are plotted against time. The Hawkes process events are more

tightly clustered in time than the Poisson process of Figure 1(b), perhaps more closely

resembling Figure 1(a).

The Hawkes process appears in the seismology literature as a model for the timing of

earthquakes and their aftershocks [25]. As interest in and availability of large data sets

of human activities have grown, Hawkes processes have been used to model electronic

communications [5], gang crimes [10, 15, 33], and even terrorist and insurgent activity

[19, 24].

The constraints on µ and g are modest. First, we assume that µ > 0. Second, so

that the process is self-exciting rather than self-dampening, we assume g is non-negative.

Finally, we assume that
∫∞

0 g(t; θ)dt < 1 to ensure that the process is stationary. The
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Figure 2. Three realisations of a Hawkes process with µ = 0.15 and g(t) = 0.5e−0.6t. The
horizontal axis is time. Circles indicate events, and the solid curve is the intensity.

importance of this assumption becomes clear when we recognise that
∫∞

0 g(t; θ)dt is the

expected number of immediate descendants of each event. Were it greater than 1, then

each event could be expected to give rise to infinitely many others. This would make the

process explosive and impossible to simulate repeatedly. It also runs against intuition for

our application to emails within a social network (all email threads end eventually) or

indeed any of the other applications mentioned above.

Our approach recalls that of Stomakhin, Short & Bertozzi’s work on networks of crim-

inal gang rivalries [33]. A gang that has been victimised by a rival will often retaliate,

setting off a burst of tit-for-tat crimes. Stomakhin, Short & Bertozzi associate to each

pair of rival gangs an independent Hawkes process whose events represent crimes com-

mitted by one gang against the other. Then, noting that law enforcement often knows

which gang was victimised but not which gang was the perpetrator, they cast the task

of solving the crime as a missing data problem, in which a history of gang crimes is

known but some of the identities of the gangs involved in particular incidents are hid-

den. Like Stomakhin, Short & Bertozzi, we will assign independent Hawkes processes to

the connections within a social network and solve a missing data problem. However, our

variational approach will be different.

Lee et al. [17] also use message data to solve an inverse problem. However, they seek

the actors’ positions in physical space rather than their identities. Also their approach is

fundamentally Bayesian, while ours is based in maximum likelihood.
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Table 1. Pairs of officers who exchanged > 100 emails

Pair Number of emails Pair Number of emails

(9,18) 1,042 (18,22) 222
(11,22) 511 (4,13) 134
(13,17) 302 (9,13) 131
(11,13) 293 (13,18) 130
(8,18) 281 (13,22) 120
(13,15) 223 (3,17) 116

1.2 The IkeNet data set

Between 2010 and 2011, email exchange data was collected from 22 volunteers, all mid-

career United States Army officers enrolled in the Eisenhower Leadership Development

Program, a one-year graduate program administered jointly by Columbia University and

the United States Military Academy. During their enrollment, members of this “Ike”

network were given cell phones with which they could access their military email accounts.

Of the 22 participants, 19 (90%) were male, and 17 (77%) were Caucasian. At the start

of the project they ranged in age from 26 to 33 years.

The data set consists of time stamps and anonymised sender and receiver codes from

8,896 emails sent among the participating officers over a 361-day period. This is a so-

cial network with 253 connections. (We include self-connections because the volunteers

emailed themselves.) Emails were sent along 250 of these connections.

The emails are by no means distributed evenly among these 250 connections. Table 1

lists the 12 pairs of officers who exchanged more than 100 emails. The top pair (9,18)

exchanged 1,042 emails, or 11.7% of all the emails in the corpus. Together these top 12

exchanged 3,505 emails, or 39.4% of the corpus. Figure 3 is a histogram of the number

of emails exchanged among the remaining pairs, all of them less than 100. Many of the

pairs of officers exchanged only a few emails, while a few pairs exchanged a substantial

proportion of all emails in the corpus, and a few users (13, 18, 22) appear three times

or more in this list of highly active pairs. These observations are consistent with a core–

periphery structure, which is a characteristic of many social networks [7].

Fox et al. [11] perform several statistical studies of this data set, including fitting

Hawkes processes to the email patterns via maximum likelihood estimation. They find

that a Hawkes process model fits the IkeNet data better than a homogeneous Poisson

model, as measured by the Akaike information criterion (AIC). They also incorporate

the results of a leadership survey administered to the volunteers, revealing more details

of the social network.

Our approach differs from Fox et al.’s in two basic ways. First, while they assign an

independent Hawkes process to each officer (i.e., each node in the network), we assign one

to each relationship between officers (i.e., each edge in the network). This is appropriate

to the missing data problem, in which differences in the officers’ relationships matter a

great deal. Second, while Fox et al. allow the background rate µ to change periodically to

capture daily and weekly rhythms in email traffic, we take µ as a constant. We expect this

simplification’s impact to be modest, because Fox et al. found only a modest improvement
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Figure 3. Histogram of the number of emails sent between each pair of officers. Only pairs
who exchanged fewer than 100 emails are shown; see Table 1 for the others.

in AIC by moving to a time-varying µ, and because we do not expect it to have much

import for our missing data problem.

2 EM estimation of Hawkes process parameters

First we must discuss fitting the parameters of a Hawkes process to data. We take a

maximum-likelihood approach, using an expectation-maximisation numerical method to

combat the problem’s ill conditioning [21, 35]. Finally, we give several examples for

different choices of the triggering function g. It is most common in the literature to

assume an exponential form for g [5, 11, 15, 22, 33], though other forms are also in use,

including power law [6, 26] and the exponential multiplied by a polynomial [27]. Our

comparison of exponential and power-law forms suggests that it does not matter which

is used, validating the frequent use of the exponential form.

The general problem is, given an interval [0, T ] and a time series {ti}
n(T )
i=1 falling in

that interval, to produce statistical estimates µ̂ and ĝ for the µ and g of the Hawkes

process assumed to generate the data. Nonparametric methods of estimating g exist [18],

but our approach will be to assume a form for g (in statistical parlance, to adopt a model

for g) and instead estimate θ, the vector of parameters, together with µ using maximum

likelihood, yielding parameter estimates (µ̂, θ̂).

The likelihood that a nonhomogeneous Poisson process generated a history {ti}
n(T )
i=1 is

L = exp

(

−

∫ T

0

λ(t|{ti}
n(T )
i=1 )dt

) n(T )
∏

i=1

λ(ti|{tj}
i−1
j=1). (2.1)

See [30] for a detailed discussion. It is standard to instead maximise the log-likelihood,
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which for a Hawkes process as in (1.1) has the form

logL(µ, θ) =

n(T )
∑

i=1

(

log

(

µ+
i−1
∑

j=1

g(ti − tj ; θ)

)

−

∫ T−ti

0

g(t; θ)dt

)

− µT. (2.2)

Ozaki [28] treats maximum likelihood estimation of the parameters when g is exponential.

2.1 Generating Hawkes process time series

Throughout this section, and again in section 4 when considering simulated networks,

we use Lewis’s thinning method [20, 25] to generate artificial Hawkes process time series.

Briefly, given a history {ti}
n
i=1 at time t, we simulate an independent exponential random

variable s with rate parameter λ(t|{ti}
n
i=1). Were this process homogeneous, we would

take tn+1 = t + s, set t = t + s, and continue. However, because the intensity decays

following an event, we only do this with probability λ(t + s|{ti}
n
i=1)/λ(t|{ti}

n
i=1). If we

do not, we set t = t+ s and generate a new s. The procedure continues until t > T .

2.2 The EM algorithm

To estimate the Hawkes process parameters we adapt the expectation-maximisation (EM)

algorithm of Veen & Schoenberg [35]. The algorithm maximises the likelihood (2.1), but

indirectly, so as to avoid the conditioning problems of maximising (2.2) by standard

iterative methods.

The algorithm relies on the Hawkes process’s branching structure. The linearity of

the intensity process (1.1) allows us to calculate the probability that a given event was

triggered by any previous event; otherwise it is a background event. The probability that

an event occurring at time ti is a background event is µ/λ(ti), and the probability that

it was caused by an event that occurred at time tj < ti is g(ti − tj)/λ(ti).

The EM algorithm alternates between an expectation step and a maximisation step. At

the kth iteration we have an estimate (µ(k), θ(k)) of the parameters. The expectation step

of the (k+1)th iteration uses those parameters to calculate p
(k+1)
i,i and p

(k+1)
i,j , respectively

the probabilities that event i was a background event or was caused by event j:

p
(k+1)
i,i =

µ(k)

µ(k) +
∑i−1

j=1 g(ti − tj ; θ(k))
,

p
(k+1)
i,j =

g(ti − tj ; θ
(k))

µ(k) +
∑i−1

j=1 g(ti − tj ; θ(k))
.

The maximisation step maximises the complete data likelihood of the branching struc-

ture. The likelihood of a given structure can be decomposed into independent pieces:

• The number of background events. This is a Poisson random variable (call it b) with

expectation µT . Its likelihood is

L1(µ) = e−µT (µT )b

b!
.

• The number of immediate descendants of each event, both background and triggered,
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given b. Let di be the number of descendants of event i. It is also Poisson, and its

expectation is
∫ T−ti

0 g(t; θ)dt. Lewis & Mohler [18] found that approximating this by

G(θ) =
∫∞

0 g(t; θ)dt had only a modest impact on the reliability of results, so we adopt

this approximation for simplicity. Because each di is independent of the others, their

joint likelihood is

L2(θ) =

n
∏

i=1

e−G(θ)G(θ)di

di!
.

• The timing of the descendant events given b and all the di. Let j(i) be the event of

which i is the immediate descendant, with j(i) = i if i is a background event. The

likelihood of event i occurring at time ti is g(ti − tj(i); θ)/G(θ) (we again approximate

a finite integral of g by G(θ)), so the joint likelihood of all events’ timing is

L3(θ) =
∏

i:j(i)<i

g(ti − tj(i); θ)

G(θ)
.

The background events are distributed uniformly in [0, T ], so their timing does not

enter into the likelihood.

The likelihood of the overall branching structure is the product of L1(θ), L2(θ), and

L3(θ). The log-likelihood is

ℓc(µ, θ) = −µT + b logµ+ b logT − log(b!) +
n
∑

i=1

(−G(θ) + di logG(θ) − log(di!))

+
∑

i:j(i)<i

(log g(ti − tj(i); θ)− logG(θ)).

We are maximising with respect to the parameters (µ, θ), so we disregard additive terms

that are constants in them. Then we take the expectation with respect to the probabilities

calculated in the expectation step:

E(k+1)(µ, θ) = −µT + (logµ)
n
∑

i=1

p
(k+1)
i,i − nG(θ) +

n
∑

i=1

i−1
∑

j=1

p
(k+1)
i,j log g(ti − tj ; θ).

It is this function that we maximise with respect to (µ, θ).

Regardless of the model for g, the maximising value of µ is

µ̂(k+1) =

∑n
i=1 p

(k+1)
i,i

T
.

The maximising θ satisfies

∇G(θ̂(k+1)) =
1

n

n
∑

i=1

i−1
∑

j=1

p
(k+1)
i,j

∇θg(ti − tj ; θ̂
(k+1))

g(ti − tj ; θ̂(k+1))
. (2.3)

Fortunately, for both the models we choose for g, (2.3) reduces to tractable algebraic

expressions for each component of θ̂(k+1).



8 J. R. Zipkin et al.

Table 2. EM estimation results

Model Parameter Ground truth Mean

µ 0.05 0.05002
Exponential α 0.5 0.4733

ω 6 6.753

µ 0.05 0.05095
Power law α 0.5 0.4641

q 3 3.590

2.3 Example: exponential triggering

First, we choose g(t;α, ω) = αωe−ωt. The L1 condition on g is equivalent to ω > 0 and

0 ≤ α < 1. The θ condition (2.3) reduces to

α̂(k+1) =

∑n
i=1

∑i−1
j=1 p

(k)
i,j

n
, ω̂(k+1) =

∑n
i=1

∑i−1
j=1 p

(k)
i,j

∑n
i=1

∑i−1
j=1 p

(k)
i,j (ti − tj)

.

We generated 50,000 realisations of a Hawkes process with this triggering function, with

T = 361, µ = 0.05, α = 0.5, and ω = 6. (These values were chosen to correspond with the

IkeNet data.) We then estimated the parameters using the EM algorithm. The results are

presented in Table 2 and Figure 4(a). The estimates for the parameters are distributed

about their ground-truth values, with a slight rightward skew for µ and more pronounced

leftward and rightward skews for α and ω, respectively. Of the 50,000 estimates for ω,

504 or about 1% were greater than 18; these are omitted from the histogram.

2.4 Example: power-law triggering

Many human behaviour patterns exhibit power-law scaling in inter-event times [1]. There-

fore, we now choose g(t;α, q) = α(q−1)(1+t)−q. This has the same number of parameters

as the previous section’s exponential model. The L1 condition on g is equivalent to q > 1

and 0 ≤ α < 1. The θ condition (2.3) reduces to

α̂(k+1) =

∑n
i=1

∑i−1
j=1 p

(k)
i,j

n
, q̂(k+1) = 1 +

∑n
i=1

∑i−1
j=1 p

(k)
i,j

∑n
i=1

∑i−1
j=1 p

(k)
i,j log(1 + ti − tj)

.

Again, we generated 50,000 realisations with T , µ, and α as above, and q = 3. The

results are presented in Table 2 and Figure 4(b). As with the exponential triggering

function, estimates for µ and α are overall close to their ground truths with, respectively,

a slight rightward skew and a more pronounced leftward skew,. The estimates of q clearly

peak around 3 but skew rightward. Of the 50,000 estimates for q, 446 or about 0.9% were

greater than 11; these are omitted from the histogram.
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Figure 4. Histograms showing the results of EM estimation of model parameters for (a) expo-
nential and (b) power law triggering functions. For each model 50,000 time series were generated.
About 1% of the results for ω and q are omitted because they are outliers that exceed the right
limit of the graph.

2.5 Comparison of exponential and power-law

In practice we may not know the best form of the triggering function to use when mod-

elling a point process. Nonparametric methods are one solution [18]; however, these can

be cumbersome, and without enough data they invite overfitting. Instead we ask whether

time series generated by the two triggering functions discussed in sections 2.3 and 2.4

can be told apart. The triggering functions are plotted together in Figure 5. They have

the same integral, but the power-law triggering function has a longer tail. One might

reasonably expect these two triggering functions to produce different behaviours.

Most of the time we consider the likelihood only in the context of maximising it with

respect to the parameters or the model, given a history. But the likelihood has compar-

ative value, as well. Comparing the likelihoods of models or sets of parameters to the
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Figure 5. Triggering functions. Exponential: g(t) = 3e−6t. Power law: g(t) = (1 + t)−3.

maximum likelihood value reveals how much likelihood we lose by adopting suboptimal

assumptions.

To wit, we calculate different likelihood values given the 50,000 Hawkes process re-

alisations we generated for each triggering function in sections 2.3 and 2.4. For each

exponential history H = {ti}
n
i=1, we compute the log-likelihood (2.2) of the EM pa-

rameters (µ̂exp(H), θ̂exp(H)) and the exponential ground-truth parameters (0.05, 0.5, 6).

We also calculate (µ̂pow(H), θ̂pow(H)), the parameters maximising the likelihood under

a power law model, and compute their likelihood. For comparison we also compute the

likelihood for the power-law ground-truth parameters (0.05, 0.5, 3). We then repeat the

process mutatis mutandis for each power-law history. In this way we hope to quantify

the loss incurred by using the “wrong” model for the triggering function, as compared to

the loss incurred by using the “right” model with the “wrong” parameters. Because both

models have the same number of parameters, the penalty term of the Akaike information

criterion is unnecessary.

Table 3 summarises the results. The numbers are the average loss in log-likelihood

from the maximum by adopting a certain model and parameters across all realisations.

The first column is the loss from using the “correct” model and the EM parameters.

As expected this is 0 for both models. The second column is the loss from adopting

the “incorrect” model but using the likelihood-maximising parameters given that model.

The third column is the loss from using the “correct” model’s ground-truth parameters

rather than the likelihood-maximising parameters. The fourth column is the loss using

the “incorrect” model’s ground-truth parameters. We have no reason to expect this last

category to perform well; we include it for a sense of scaling.

In both cases, the loss from using the EM parameters assuming the wrong model is

significantly less than the loss from using the right model with the ground-truth param-

eters. To emphasise, these are the parameters that actually generated the histories, and

they still are not as good as a certain set of parameters attached to the wrong model

(though not every set, as the fourth column makes clear). The clear moral is that selecting

the “correct” model is not as important as finding the likelihood-maximising parameters
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Table 3. Log-likelihood loss vs. maximum

Model Correct Incorrect Correct Incorrect
Parameters EM EM Ground truth “Ground truth”

Exponential 0 −0.11 −1.51 −7.47
Power-law 0 −0.05 −1.50 −7.66

once a model has been selected. This justifies the common assumption of the convenient

exponential form for the triggering function.

3 The missing data problem

In this section we state the missing data problem and discuss its numerical solution.

We take a variational approach, maximising a discriminant function subject to certain

constraints. For the numerics we adapt the curvilinear method of Wen & Yin [37].

3.1 Objective functions

Suppose that we have records of N emails sent among a social network of V members, as

in the IkeNet data set. But suppose that for some subset of the emails, we do not know

who sent or received them. More generally, we want to identify which of the M edges

each email in the subset was drawn from. Because M scales with V 2, a direct approach

enumerating all possibilities and checking them is not scaleable. Instead, we relax the

problem as in [33].

Number the M connections from 1 to M . (The order does not matter.) The history of

events is H = {ti}
N
i=1. This history is partitioned into C, the events for which we know

which connection the event happened on, and I, the incomplete-information event. The

complete set has the obvious partition C =
⋃M

m=1Cm into the histories associated to

each connection.

We present four methods for classifying the incomplete events. The first two are simple,

model-free methods based on basic statistics of H . The other two are variational methods

maximising a sort of score function. In each case we have what amounts to a family of

discriminant functions, one for each of the M connections. The value of the discriminant

function for ti ∈ I on connection m is xi,m. We speak of xi as the vector of weights

associated to ti ∈ I. Not every xi need belong to the same space, or even have the same

dimension, as the others. We need define xi,m only for those edges m to which ti could

belong. For example, if we know that one of the parties to an email was officer 1, we need

not consider the weight on the connection between officers 2 and 3.

The first classification method is a method of modes, which sets xi,m = |Cm|. The only

dependence on i comes from the fact that we do not set xi,m if message i could not have

been sent on connection m. The second method is a nearest-neighbor weighting, which

weights depending on the proximity in time (forward or backward) of the nearest known
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event: xi,m = max{|ti − tj |
−1 : tj ∈ Cm}.1 These two methods are in a sense dual to one

another: the method of modes is a simple, model-free, global method, and the nearest-

neighbor method is a simple, model-free, local method. They can serve as benchmarks for

the other methods, which assume a Hawkes process model and in so doing incorporate

both global and local information.

The third method for xi,m is a relaxed maximum likelihood method. The likelihood of

a given history and parameter set is

L =

(

∏

ti∈I

λmi
(ti)

) M
∏

m=1

(

∏

ti∈Cm

λm(ti)

)

e−
∫

T

0
λm(t)dt.

A true MLE approach would find the {mi : ti ∈ I} maximising the likelihood. However,

there are M |I| possible values, so this approach quickly becomes infeasible as M and |I|

grow. We instead consider a relaxed problem, in which we maximise the related quantity

L =

M
∏

m=1

(

∏

ti∈Cm

λm(ti;x)

)(

∏

ti∈I

λm(ti;x)
xi,m

)

e−
∫

T

0
λm(t;x)dt

where

λm(t;x) = µm +
∑

ti∈Cm,ti<t

g(t− ti; θm) +
∑

ti∈I,ti<t

xi,mg(t− ti; θm).

If we restrict the vector xi to be a Kronecker delta, we recover the original maximum

likelihood. The relaxation is in the constraint on each xi: ‖xi‖2 = 1 and xi,m ≥ 0 for all

m. In practice we will maximise not L directly but a quantity that is off by an additive

constant from its logarithm, namely

FMRL(x) =

M
∑

m=1

(

∑

ti∈Cm

logλm(ti;x) +
∑

ti∈I

xi,m logλm(ti;x)−
∑

ti∈I

xi,mGm(T − ti)

)

,

where Gm(t) =
∫ t

0 g(s; θm)ds. (MRL here stands for maximum relaxed likelihood.)

The fourth method is the Stomakhin–Short–Bertozzi (SSB) method outlined in [33].

This essentially maximises FSSB defined by

FSSB(x) =
M
∑

m=1

∑

ti∈I

xi,mλm(ti;x)

subject to similar constraints on each xi.

3.2 Numerical implementation

Computing x for the method of modes and nearest-neighbor method is straightforward.

Constrained maximisation of FSSB and FMRL requires more care. Both optimisations

have the form

maxF (x) s.t ‖xi‖2 = 1 ∀i and xi,m ≥ 0 ∀i,m.

1 The maximand can be replaced with (δ + |ti − tj |)
−1 if some ti coincides with some tj .
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Table 4. Objective functions

Method F (x)

SSB
∑M

m=1

∑

ti∈I
xi,mλm(ti;x)

MRL
∑M

m=1

(
∑

ti∈Cm
log λm(ti;x) +

∑

ti∈I xi,m log λm(ti;x)−
∑

ti∈I xi,mGm(T − ti)
)

The forms of F are summarised in Table 4. This is a variational approach to the classifi-

cation problem. Variational methods have had success in various applications, including

image processing [3, 4, 31].

Though FSSB was created to approximate the behaviour of FMRL, the two functions

have different properties. For example, FSSB is a quadratic function with all positive

coefficients, so within the feasible set all its partial derivatives are positive. This means

that every component of the maximising x is positive. (See the appendix for a proof.

Briefly, it makes sense to redistribute a little weight from a positive component to a zero

component, because the benefit scales linearly with the size of the redistribution, while

the cost scales quadratically.) Not so for FMRL:

∂FMRL

∂xi,m

= logλm(ti;x)+
∑

tj∈Cm; tj>ti

gm(tj − ti)

λm(tj ;x)
+

∑

tj∈I; tj>ti

xi,mgm(tj − ti)

λm(tj ;x)
−Gm(T−ti).

The two sums are positive, but the logarithm need not be, and −Gm(T − ti) can easily

be the dominant term.

We used a modified version of the curvilinear search described in [37]. In this section

we introduce that algorithm, discuss our modifications, and finally present the whole

algorithm for reference.

3.2.1 Wen & Yin’s curvilinear search

Gradient ascent is the most basic and intuitive iterative method for smooth maximisation,

but it does not preserve norms. Wen & Yin [37] present a curvilinear adaptation that

preserves orthogonal constraints of the form XTX = I, of which our constraint ‖xi‖2 = 1

is a special case. Let Fxi
(x) denote the gradient of F with respect to xi, evaluated at x.

Given x and a step size τ > 0, the method computes the update yi(τ, x) according to a

Crank–Nicolson-type scheme:

yi(τ, x) = xi +
τ
2A(x, i)(xi + yi(τ, x)),

where

A(x, i) = Fxi
(x)xT

i − xiFxi
(x)T. (3.1)

By Lemma 4 in [37], yi(τ, x) can be written explicitly as

yi(τ, x) = (1− β2)xi + β1Fxi
(x), (3.2)
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where

β1 =
τ

1 + ( τ2 )
2δi(x))

,

β2 = (Fxi
(x)Txi +

τ
2 δi(x))β1,

δi(x) = ‖Fxi
(x)‖22 − (Fxi

(x)Txi)
2.

Because ‖xi‖2 = 1, the Cauchy–Schwarz inequality ensures that δi(x) ≥ 0. Furthermore,
d
dτ
F (y(τ, x))|τ=0 = 1

2δi(x), so yi(τ, x) is an ascent direction.

Classical Crank–Nicolson would use 1
2 (Fxi

(x) + Fxi
(y(τ, x))) as the step direction,

where y(τ, x) is x but with yi(τ, x) replacing xi. However, this does not guarantee the

spherical constraint. By contrast a straightforward calculation verifies that if ‖xi‖2 = 1,

then ‖yi(τ, x)‖2 = 1 for all τ > 0. The form of A (3.1) is inspired by work on p-harmonic

flows with spherical constraints [12, 36].

3.2.2 Inequality constraints

The algorithm in [37] simply sets x
(k+1)
i = yi(τ, x

(k)
i ), with some adaptive time stepping

for τ . While this preserves ‖xi‖2, it does not preserve the signs of the components of xi.

Our inequality constraint xi,m ≥ 0 forces us to concern ourselves with the signs.

If each component of x(k) (the kth iterate) is positive but some component of yi(τ, x
(k)
i )

is negative, then there exists a largest σ ∈ (0, τ) so that yi(σ, x
(k)) has all non-negative

components. This σ is actually straightforward to compute, because each equation of the

form yi,m(σ, x
(k)
i ) = 0 is a quadratic equation in σ. However, we found that this technique

was slow in practice because it only allows one dimension of xi to reach 0 at a time. When

F = FSSB, many components of the maximiser x∗
i are close to 0, so we would like to allow

many of them to reach 0 at once so they can then turn around and find their correct

(small, positive) value. When F = FMRL, many dimensions will ultimately belong to the

active set, and we would like to identify several of them at a time if possible. Therefore,

we adopt the less elegant but faster method of setting z = max(0, yi(τ, x
(k)
i )), with the

max done componentwise, and then redistributing the mass to preserve the ℓ2 norm, i.e.

x̃
(k+1)
i = z/‖z‖2.

If we adopt x
(k+1)
i = x̃

(k+1)
i , then it may have components that are zero and that

will become negative after another iteration of the curvilinear search. If we continue

with these components, the algorithm may hang because the projection back to the

sphere may become parallel to the curvilinear search direction. We can prevent this if we

acknowledge that any dimensions m for which yi,m(τ, x̃
(k+1)
i ) < 0 belong to the active set

of inequality constraints. Noting from (3.2) that yi,m(τ, x) and Fxi
(x) have the same sign

when xi,m = 0, we set x
(k+1)
i = P (x, x̃

(k+1)
i )x̃

(k+1)
i , where P (x, x̃

(k+1)
i ) is the projection

onto the subspace of those dimensions m for which x̃
(k+1)
i,m > 0 or Fxi

> 0, with the

derivative evaluated at x except with xi replaced with x̃
(k+1)
i . (As we iterate, we also

remove dimensions from F and ∇F so that dot products with xi still make sense and so

that we are not calculating derivatives unnecessarily.)

When F = FSSB the solution can have many small positive components. It is possible

that at x
(1)
i many components x

(1)
i,m are small and positive but have yi,m(τ, x(1)) < 0, and
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many others are zero but have yi,m(τ, x(1)) > 0. These sets of components trade places in

x
(2)
i , and the next iteration will send it back to very close to x

(1)
i . If enough components

keep “trading places” like this it can cause the algorithm to hang without reaching the

stopping criterion. We found that when |I| was large this happened a small but nontrivial

percentage of the time. We also found that we could eliminate the problem by checking

the signs of the components of xi versus yi(τ, x). If most were different, we tried yi(τ/2, x),

and then yi(τ/4, x), and so on until a majority of the signs were preserved.

Once the iteration completes, we need to check that the dimensions we have projected

away still correspond to active constraints. If they do not, we project x(k) into a larger

space including the inactivated dimensions and resume iterating.

3.2.3 Stopping criterion

Wen & Yin [37] give a stopping criterion of ‖∇F‖2 < ǫ. Our stopping criterion must be

different, because we do not expect ‖∇F‖2 to decrease to 0 as we iterate. (Indeed, as

noted above, the components of ∇FSSB are always positive.) Instead we look for ∇F to

be normal to the constraint surface. Since the constraint surface is a sphere, this means

we want ∇F ·x to be large relative to the size of ∇F . Specifically, our stopping criterion

is

min
ti∈I

|Fxi
(x

(k)
i ) · x

(k)
i |

‖Fxi
(x

(k)
i )‖2

> 1− ǫ.

The absolute value in the numerator is necessary only if every Fxi
(x

(k)
i ) is negative. This

can happen when F = FMRL but not when F = FSSB.

3.2.4 Algorithm

while maxti∈I |Fxi
(xi) · xi|/‖Fxi

(xi)‖2 > ǫ do

for i = 1 : |I| do

v = Fxi
(x)

δ = ‖v‖22 − (vTxi)
2

β1 = τ/(1 + ( τ2 )
2δ)

β2 = (vTxi +
τ
2 δ)β1

y = (1− β2)xi + β1Fxi
(x)

τ = τ

while most components of y have different signs than xi do

τ = τ/2

β1 = τ/(1 + ( τ2 )
2δ)

β2 = (vTxi +
τ
2 δ)β1

y = (1− β2)xi + β1Fxi
(x)

end while

z = max(0, y) componentwise

x̃ = x

x̃i = z/‖z‖2
v = Fxi

(x̃)
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Let P project the space of xi to the subspace where x̃i,m > 0 or vm > 0

xi = P x̃i

Fxi
= PFxi

end for

end while

for i = 1 : |I| do

Let Q project the space of xi into its original, full space

wi = Qxi

Fxi
= QFxi

end for

startover = false

for i = 1 : |I| do

v = Fxi
(w)

for all m in the space of wi do

if m is not in the space of xi and vi > 0 then

Project xi into its own space augmented with dimension m.

startover = true

end if

end for

end for

if startover then

for i = 1 : |I| do

Project Fxi
into the space of xi

end for

Return to the start.

end if

3.2.5 Practical computing considerations

The most computationally expensive part of our C++ implementation of the algorithm

is the computation of the derivative Fxi
. Care must be taken to minimise this expense.

For reference, its components for our two choices of F are

∂FSSB

∂xi,m

= µm +
∑

tj∈Cm

gm(|ti − tj |) +
∑

tj∈I; tj 6=ti

xj,mgm(|ti − tj |), (3.3)

and

∂FMRL

∂xi,m

= logλm(ti;x)+
∑

tj∈Cm; tj>ti

gm(tj − ti)

λm(tj ;x)
+

∑

tj∈I; tj>ti

xi,mgm(tj − ti)

λm(tj ;x)
−Gm(T−ti).

Values of gm should never be computed “on the fly”; each should be precomputed and

stored. Most of these values will be so small that treating them as zero will have a de

minimis impact on the results, but avoiding computing them (and computing with them)

saves tremendous time. Set a small threshold η > 0, and compute gm(ti − tj) only if it

will exceed ηµm/|Cm|, i.e. if |ti − tj | < g−1
m (ηµm/|Cm|). This adds a layer of dependency

tracking, but the savings in floating point operations are well worth it.



Point-process models of social network interactions 17

When F = FSSB, the update formula

∂FSSB

∂xi,m

(x(1)) =
∂FSSB

∂xi,m

(x(0)) +
∑

tj∈I; tj 6=ti

gm(|ti − tj |)(x
(1)
j,m − x

(0)
j,m)

can save time when recomputing Fxi
. When F = FMRL, a corresponding update formula

applies for λm(tj ;x). The λ values should be tracked, while the logarithm should be

computed only when it is needed.

4 Results

Here we present results for different configurations of missing data. First we present

results from the IkeNet data set. Then we test the methods on simulated time series

on artificial social networks, including some toy networks and some meant to resemble

IkeNet. We conclude the section by discussing the results in detail.

In each of our tests we begin with a complete data set, whether it is real (IkeNet) or

simulated. Then we knock out some of the information to see whether we can recover

it from the rest of the corpus. The information might be a particular email’s sender or

receiver, an email’s sender and receiver, or the senders and receivers of several emails.

When deleting one record at a time we repeat this for each record in the corpus. When

deleting more than one record, exhausting the space of combinations is infeasible, so we

take a Monte Carlo approach.

We consider a data recovery method successful when the correct component xi,m has a

high weight relative to other components. In particular, we want xi,m to be the greatest

component, or perhaps the second or third greatest. This metric was considered previ-

ously in [33] based on input from the LAPD. (The context there was solving gang crimes,

where narrowing down the list of suspect gangs to three can help detectives.) We also

present the results for top 5 and top 10 to showcase a property of the MRL optimiser.

We estimate the Hawkes process parameters using the techniques described in section

2. The SSB and MRL iterations are seeded with the solution from the nearest-neighbor

method.

4.1 IkeNet

4.1.1 Unidirectional identity loss, one at a time

First we took each email in the corpus and saw whether we could determine who sent

it knowing its receiver and the rest of the corpus. Repeating this for each email in the

corpus meant 8,896 separate runs with |I| = 1 each time. The average performance is

shown in Table 5.

Table 5 shows that SSB, nearest-neighbor (NN), and MRL guess the correct sender

about 60% of the time. There is a clear ranking among them, with SSB outperforming

nearest-neighbor and nearest-neighbor outperforming MRL. MRL’s relative performance

decreases left to right. The method of modes performs poorer than the other methods.

Table 6 shows the results when we repeat the process but try to guess the receiver

knowing the sender. The numbers are slightly different, but the same patterns prevail.
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Table 5. IkeNet: Predictive power for missing sender by method (|I| = 1)

Method Top 1 Top 2 Top 3 Top 5 Top 10

Modes 27.8% 41.1% 50.0% 62.9% 82.0%
NN 62.9% 75.1% 79.8% 85.3% 92.6%
SSB 63.1% 74.7% 80.0% 85.8% 93.3%
MRL 61.1% 70.0% 72.4% 73.3% 73.6%

Table 6. IkeNet: Predictive power for missing receiver by method (|I| = 1)

Method Top 1 Top 2 Top 3 Top 5 Top 10

Modes 30.4% 43.5% 52.1% 64.4% 82.7%
NN 58.0% 73.3% 80.1% 86.6% 93.9%
SSB 59.2% 73.9% 80.6% 87.1% 93.7%
MRL 58.9% 69.0% 71.7% 72.6% 72.8%

4.1.2 Unidirectional identity loss, missing proportions

We now consider what happens when larger blocks of data are missing, which will be the

case in applications. We selected a percentage of the emails at random and removed the

sender or receiver information (chosen randomly for each email). We then attempted to

recover the missing data. We repeated this process for 10,000 Monte Carlo runs at each

missing percentage.

Table 7 shows the results. As expected, the performance decreases as the missing pro-

portion increases from 5% to 20%, but only by a few percentage points. This demonstrates

the methods’ robustness to larger missing blocks of data. Interestingly, MRL overtakes

SSB as the missing proportion increases, but only for top 1. The method of modes ex-

periences no degradation. This is not a surprise; it returns the same top pairs shown in

Table 1 until enough data is missing in the right places that the order statistics change.

4.1.3 Bidirectional identity loss, one at a time

We repeated the one-at-a-time procedure with deleting both sender and receiver from

each email, resulting in bidirectional identity loss. Table 8 presents the results. The meth-

ods do not perform as well as when only the sender or receiver is missing because instead

of choosing among the 22 edges connected to each nodes they must choose among the

253 edges in the complete graph.2 Nonetheless the local methods guessed the correct

edge about 40% of the time and got in the top 3 about 55-60% of the time. MRL still

underperforms, but by less than with unidirectional loss. The method of modes continues

to underperform all other methods.

Table 9 presents average numerical values of FSSB and FMRL evaluated at the bidirec-

2 Actually there are only 250 edges; as noted above, three pairs of agents exchanged no emails.
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Table 7. IkeNet: Predictive power for unidirectional identity loss (|I| > 1)

|I |/N Method Top 1 Top 2 Top 3 Top 5 Top 10

5%

Modes 29.1% 42.2% 50.9% 63.1% 82.1%
NN 59.9% 73.5% 79.3% 85.4% 93.0%
SSB 59.9% 73.5% 79.7% 86.0% 93.3%
MRL 59.4% 68.9% 71.4% 72.2% 72.4%

10%

Modes 29.1% 42.2% 50.9% 63.1% 82.1%
NN 59.3% 72.8% 78.6% 84.7% 92.6%
SSB 58.8% 72.7% 79.0% 85.5% 93.1%
MRL 58.9% 68.3% 70.7% 71.5% 71.7%

15%

Modes 29.1% 42.1% 50.9% 63.1% 82.1%
NN 58.7% 72.1% 77.8% 84.1% 92.3%
SSB 57.7% 71.9% 78.4% 85.1% 92.9%
MRL 58.3% 67.6% 69.9% 70.7% 70.8%

20%

Modes 29.1% 42.1% 50.9% 63.1% 82.0%
NN 58.0% 71.2% 77.0% 83.4% 91.9%
SSB 56.7% 71.1% 77.7% 84.6% 92.6%
MRL 57.7% 66.8% 69.1% 69.9% 70.0%

Table 8. IkeNet: Predictive power for bidirectional identity loss (|I| = 1)

Method Top 1 Top 2 Top 3 Top 5 Top 10

Modes 11.7% 17.5% 20.9% 27.3% 36.7%
NN 37.9% 51.3% 58.5% 65.6% 73.2%
SSB 39.6% 51.1% 57.6% 65.3% 73.0%
MRL 36.4% 47.8% 55.0% 61.4% 66.1%

Table 9. IkeNet: Average energy values for bidirectional identity loss (|I| = 1)

Method FSSB FMRL

Modes 45.82 85.62
NN 122.39 99.37
SSB 141.39 99.47
MRL 118.09 101.01

tional identity loss solutions in Table 8.3 Horizontal comparison of the values is meaning-

less, but vertical comparison is not. The results verify that the SSB and MRL solutions

maximise FSSB and FMRL, respectively.

3 The values shown are actually of F (x)− Fmin to highlight the differences in scale.
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Table 10. IkeNet: Predictive power for bidirectional identity loss (|I| > 1)

|I |/N Method Top 1 Top 2 Top 3 Top 5 Top 10

5%

Modes 11.7% 17.5% 20.8% 27.3% 36.7%
NN 37.6% 50.8% 57.9% 64.9% 72.4%
SSB 38.6% 50.4% 56.9% 64.3% 72.2%
MRL 36.0% 47.4% 54.4% 60.9% 65.2%

10%

Modes 11.7% 17.5% 20.8% 27.3% 36.7%
NN 37.3% 50.3% 57.2% 64.1% 71.5%
SSB 37.5% 49.3% 55.8% 63.2% 71.3%
MRL 35.6% 47.0% 53.8% 60.2% 64.4%

Table 11. IkeNet: Average energy values for bidirectional identity loss (|I|/N = 5%)

Method FSSB/|I | FMRL/|I |

Modes 49.12 84.08
NN 120.67 97.87
SSB 147.45 97.88
MRL 115.53 100.12

4.1.4 Bidirectional identity loss, missing proportions

Table 10 shows the results of the Monte Carlo approach for larger blocks of missing

bidirectional data. Bidirectional is much more intensive computationally than unidirec-

tional, so we present proportions only up to 10% here. The degradation is again modest

(compare with Table 8), and the ranking of methods is consistent.

Table 11 shows average energy values, normalised by the size of the missing block for

comparison with Table 9. The values are close, and the same hierarchies are apparent.

4.2 Simulated time series

We simulate Hawkes processes on two classes of networks. First we consider some toy

networks with simple structures. Then we simulate a faux IkeNet (FauxNet) using the

IkeNet parameters.

4.2.1 Toy networks

We use three different configurations of toy networks. Like IkeNet they have 22 nodes,

but a known interaction structure. We assume that g is exponential with α = 0.5, ω = 6,

with the background rate µ varying to show different levels of interaction.

• Dense: All nodes are connected to each other (a complete graph), with a low rate of

interaction (µ = 0.03).

• Sparse: The nodes are arranged in a ring. Each node is connected to its two neighbors
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Table 12. Toy networks: Predictive power for bidirectional identity loss (|I| = 1)

Network Method Top 1 Top 2 Top 3 Top 5 Top 10

Dense

Modes 1.0% 1.9% 2.7% 4.3% 7.9%
NN 21.4% 36.5% 47.0% 59.3% 69.0%
SSB 27.4% 41.6% 50.6% 61.0% 69.7%
MRL 26.4% 40.9% 49.6% 57.9% 61.9%

Sparse

Modes 4.5% 8.6% 12.4% 20.1% 37.7%
NN 36.9% 55.5% 65.0% 72.6% 78.8%
SSB 40.8% 57.5% 65.8% 73.0% 79.6%
MRL 39.8% 55.9% 62.0% 63.6% 64.9%

Pseudosparse

Modes 1.5% 2.8% 4.2% 6.7% 12.5%
NN 17.9% 31.4% 41.5% 54.7% 67.6%
SSB 23.7% 36.8% 45.8% 57.0% 68.3%
MRL 23.0% 36.2% 45.1% 54.9% 61.5%

and to the node opposite it in the ring, so that the graph looks like a wheel with spokes

(except there is no node at the axle). Interaction rates between connected nodes are

high (µ = 0.1). Unconnected nodes do not interact.

• Pseudosparse: A complete graph, with high interaction (µ = 0.1) between the nodes

connected in the sparse graph and low interaction (µ = 0.03) between other pairs.

Table 12 presents the results for Monte Carlo simulation. For each network, we adopted

bidirectional identity loss for each record in succession, and then averaged the results over

each Monte Carlo simulation. Table 12 compares with Table 8.

The method of modes performs very poorly here compared with IkeNet, because the

toy networks lack the heterogeneity in activity levels evident in Table 1 and Figure 3. NN,

SSB, and MRL perform similarly, as with IkeNet, but here MRL outperforms NN. SSB

still outperforms them both. Unsurprisingly, all methods perform better on the sparse

network than on the dense network, but the local methods perform very well compared to

the method of modes even on the dense network. Interestingly, though the performance

of the method of modes on the pseudosparse network is between its performances on the

dense and sparse networks, the local methods perform worst on the pseudosparse network.

This is because the local methods perform poorer as the number of pairs experiencing a

burst of activity at any given time increases. This strength of this effect decreases as we

move from top 1 to top 10, and indeed this is reflected in Table 12.

4.2.2 FauxNet

As with the toy networks, we took a Monte Carlo approach to FauxNet, the simulated

IkeNet, and present results for bidirectional identity loss in Tables 13 and 14. The method

of modes performs almost the same as in IkeNet (see Tables 8 and 10). The other methods

perform better here by several percentage points.
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Table 13. FauxNet: Predictive power for bidirectional identity loss (|I| = 1)

Method Top 1 Top 2 Top 3 Top 5 Top 10

Modes 11.7% 17.5% 21.1% 27.5% 37.0%
NN 49.4% 60.2% 63.9% 66.8% 70.3%
SSB 53.6% 63.2% 66.8% 70.1% 74.3%
MRL 48.5% 60.6% 64.5% 65.9% 66.0%

Table 14. FauxNet: Predictive power for bidirectional identity loss (|I|/N = 5%)

Method Top 1 Top 2 Top 3 Top 5 Top 10

Modes 11.7% 17.4% 21.0% 27.3% 36.8%
NN 48.9% 59.4% 63.0% 66.0% 69.4%
SSB 52.4% 62.0% 65.7% 69.1% 73.4%
MRL 47.9% 59.8% 63.6% 65.0% 65.1%

4.3 Discussion

In all our results, the local methods (nearest-neighbor, SSB, and MRL) strongly outper-

form the purely global method of modes. This suggests that most of the information in

these sorts of records is local. Meanwhile, with IkeNet the model-free nearest-neighbor

method performs comparably to the variational methods (SSB and MRL) developed in

section 3. With the simulated Hawkes process data it underperforms SSB and, in some

places, MRL, but not by nearly the margin that the method of modes does. This sug-

gests that the Hawkes process is an imperfect model for real human communication like

the IkeNet data, but the loss incurred from these assumptions is modest. On the other

hand, the loss in assuming no model at all (i.e. using nearest-neighbor) is also modest

and has the virtue of being simpler to implement, understand, and communicate outside

technical literature.

The improvement in MRL’s performance as it moves from top 5 to top 10 is consider-

ably lower than it is for the other methods. Figure 6 reveals why. It shows a histogram

of ‖xMRL‖0, the number of nonzero components of xMRL, for each bidirectional |I| = 1

case. The median is 6, and ‖xMRL‖0 ≤ 5 in about 44% of cases. In these cases, if the

correct pair is not in the top 5 then it will not be in the top 10, either. SSB, by con-

trast, always has full ℓ0 norm (see the appendix for a proof), and even if the correct pair

has only a small positive weight it is often larger enough than the other small positive

weights to make it to the top 10. Of course, MRL has even fewer positive components

in the unidirectional case, explaining why it underperforms less in bidirectional identity

loss. Thus SSB’s density is capturing some faint information that MRL misses by being

so sparse. If a likelihood approach like MRL is to beat SSB it will likely have to mimic

this ability.

All the methods except the method of modes perform better on FauxNet than on

IkeNet. Furthermore, SSB and MRL perform better relative to nearest-neighbor on the
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Figure 6. Histogram of ‖xMRL‖0 for bidirectional identity loss, |I | = 1, for all 8,896 cases.

simulated time series than they do on IkeNet data. Both these observations suggest that

the Hawkes process is an imperfect model for the behaviour driving IkeNet.

5 Conclusion

We demonstrated that, when estimating the parameters of a Hawkes process from data,

choosing a parameterisation for the triggering function is less important than using the

correct values of the parameters. We then developed a method for filling in missing

data for interactions within social networks and presented some results from the IkeNet

data set. The method’s power even when the proportion of missing data increases has

implications for security, surveillance, and privacy. In particular, it suggests that access

to even a fraction of a complete record can reveal a great deal of information about the

remainder, emphasising the need for robust access controls.

Future work should address how network structure impacts the ability to fill in missing

data. Exogenous information (for example, the leadership relationships among the IkeNet

officers) may also be able to boost the method’s power. Future work might also seek an

objective function combining MRL’s fidelity to the original likelihood with SSB’s solution

density. However, as noted, modelling IkeNet’s email behaviours with Hawkes processes

has its limits, so consideration of other classes of self-exciting point processes may be

warranted.
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Appendix

We prove that the SSB weight vector always has all positive components, as a corollary

of the following. Intuitively, it makes sense to redistribute a little weight from a positive

component to a zero component, because the benefit scales linearly with the size of the

redistribution, while the cost scales quadratically.

Proposition Let n ≥ 2, and let D be the portion of the unit sphere in the non-negative

orthant of Rn, i.e. D = {x ∈ R
n : ‖x‖2 = 1, xi ≥ 0 ∀i}. Let f : Rn → R be differentiable

with all positive partial derivatives on the non-negative orthant. Then there exists x∗ ∈ D

maximising f on D, and ‖x∗‖0 = n, i.e. every component of x∗ is nonzero.

Proof x∗ exists because f is continuous and D is compact. Suppose by way of contra-

diction that ‖x∗‖0 < n. Without loss of generality, x∗
1 = 0. By assumption ‖x∗‖2 = 1, so

without loss of generality x∗
2 > 0. Define ξ : [0, x∗

2] → R
n by

ξi(t) =















t if i = 1,
√

(x∗
2)

2 − t2 if i = 2,

x∗
i if 3 ≤ i ≤ n.

Then ξ(t) ∈ D for every t. Because f is differentiable there exist t0 > 0 and h : (0, t0) → R

such that h(t) = o(t) as t → 0, and if 0 < t < t0 then

f(ξ(t)) = f(x∗) + t∇f(x∗)Tξ′(0) + h(t).

Easy computations show that ξ′1(0) = 1, ξ′2(0) = 0, and ξ′i(0) = 0 if 3 ≤ i ≤ n, so

f(ξ(t)) = f(x∗) + t
∂f

∂x1
(x∗) + h(t).

By assumption ∂f
∂x1

(x∗) > 0, so there exists t1 ∈ (0, t0] such that if 0 < t < t1 then

|h(t)|/t < 1
2

∂f
∂x1

(x∗), in which case

f(ξ(t)) > f(x∗) + t
∂f

∂x1
(x∗)−

t

2

∂f

∂x1
(x∗) > f(x∗),

contradicting the assumption that x∗ maximises f on D. Thus in fact ‖x∗‖0 = n.

This result recalls a familiar observation about the geometry of ℓ2 optimisation, pre-

sented in two dimensions in Figure 7. When all partial derivatives are positive, the

geometry is as in Figure 7(a). If at some point a level set lies tangent to the constraint,

or equivalently the gradient is normal to the constraint, then this point is an optimiser.

(This is the basis for the theory of Lagrange multipliers.) The partial derivatives are pos-

itive, so the level sets have negative slope. In the non-negative quadrant the ℓ2 constraint

takes every negative number as a slope, so a point of tangency is guaranteed to exist.

This is often contrasted with the ℓ1 case, where the constraint takes only one slope and

tangency may not occur, as in Figure 7(b). (This is why ℓ1 optimisers are often sparse,

for example as in [2, 8, 9, 31].) However, one can just as easily contrast Figure 7(a)

with Figure 7(c), where the negative sign of one of the partial derivatives produces pos-
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(a) (b) (c)

Figure 7. Diagrams of ℓp constraints (bold) with level sets of a function f . The dot indicates
the point maximising f subject to the constraint. It occurs at the intersection between the
constraint and the maximal level set that intersects it. (a) p = 2, ∂f/∂x1 > 0, ∂f/∂x2 > 0. (b)
p = 1, ∂f/∂x1 > 0, ∂f/∂x2 > 0. (c) p = 2, ∂f/∂x1 < 0, ∂f/∂x2 > 0.

itively sloped level sets. Because we are not permitted outside the non-negative orthant,

we must settle for the solution on the boundary. Figure 7(a) corresponds to FSSB, and

Figure 7(c) corresponds to FMRL.

Nonetheless, the assumptions that all partial derivatives of f on the non-negative

orthant be positive was stronger than necessary. It would have sufficed if, for all y ∈

D with a zero component yi = 0, ∂f
∂xi

(y) > 0. However, it is clear from (3.3) that

FSSB satisfies the stronger assumption stated in the proposition except in the trivial

degenerative case when some µm = 0.
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